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Henrik Kragh Sørensen† Line Edslev Andersen‡

March 23, 2018

Abstract

In this chapter, we propose to address the philosophy of science in practice from
a rather extreme point, namely by bringing social epistemology and philosophy of
mathematical practice to bear on each other. By discussing the role played by
epistemic dependence in select cases from contemporary mathematical practice, we
can begin to systemically map how social aspects are involved in proving, checking
and using mathematical results.

1 Introduction
Contemporary mathematical research practice does not live up to the stereotypical folk-
lore of isolated geniuses working on tractable but mindboggling problems producing re-
sults in the form of theorems with proofs that can be checked step-by-step by other
members of the community.

Over the past decades, a practice-oriented approach to the philosophy of mathematics
has developed which — among other things — is capable of questioning, modifying,
and eventually empirically substantiating philosophical reflection on the actual practice
of actual mathematicians when they produce mathematics (see e.g. Ferreirós, 2016; and
the anthologies Larvor, 2016; Löwe and Müller, 2010). Such approaches are capable of,
among many other things, showing that mathematical practice is prone with issues of
complication to the point of making the process, product, and evaluation of mathemat-
ical research unsurveyable by any individual and thus dependent on a communal sense
of trust. Mathematical research may for a number of reasons involve situations of unsur-
veyability, understood as situations where an individual mathematician cannot directly
assess and verify steps necessary for the proof. In such situations, the mathematician
would be epistemically dependent on others for assessing the proof.

In this chapter, we discuss various cases of unsurveyability that arise in mathematical
practice and influence how mathematicians become epistemically dependent upon others
when 1. proving, 2. checking, and 3. using mathematical results. Thus, we examine how
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trust is necessary in contemporary mathematical research. Our central argument is that
epistemic dependence is integral in mathematical knowledge production, and although
the cases are chosen from prominent and admittedly extreme examples, we believe that
our analyses and conclusions apply to the broad range of mathematical practice.

First, we consider epistemic dependence relations involved in checking mathematical
proofs (section 2). A mathematical result may arise on the borderline between different
mathematical sub-disciplines or techniques that are mastered by no individual mathe-
matician or only a few. This situation would often arise out of collaborations that share
much with the division of epistemic labour in interdisciplinary settings (see also H. An-
dersen and Wagenknecht, 2013), albeit within mathematics. However, we shall consider
two cases of this type where the proofs are not themselves the result of collaborations,
namely Andrew Wiles’ proof of Fermat’s Last Theorem and Grisha Perelman’s proof
of the Poincaré Conjecture. Nonetheless, the complex character of the proofs required
mathematicians with different types of expertise to work together to check them.

Second, we analyse epistemic dependence relations involved at the level of proving
mathematical results (section 3). This topic is becoming increasingly relevant as more
and more ‘ordinary’ mathematical research articles are written in collaborations. A result
may arise from a massive collaborative project that has (more or less) explicitly applied
a division of labour between its participants. Here, the matter is complicated even more
as the entity which the mathematician is required to trust is not a given set of individuals
but a changing collective which may involve many collaborators and span long periods
of time and large numbers of publications. As such, this element also brings into play
the issue of trust in the mathematical literature. We discuss the Classification of Finite
Simple Groups, which is a case of this type.

Third, we analyse a very particular type of epistemic dependence relations also in-
volved at the level of proving mathematical results (section 4). Sometimes mathemati-
cians utilize (or, for lack of better word, collaborate with) computers to prove a result. A
result may arise from the use of computer technology to run through steps too numerous
to be verified by any human mathematician or group thereof. Here, the entity to be
trusted is an even more complex one in that it not only includes mathematicians but also
other technicians and, importantly, technologies. Kenneth Appel and Wolfgang Haken’s
proof of the Four Color Theorem is an example of a proof of this kind.

When epistemic dependence relations are necessary at the level of proving a math-
ematical result, such relations are also necessary at the level of checking the result. In
addition, the epistemic dependence relations involved in proving and checking the result
at least partly determines the epistemic dependence pattern that arises when a math-
ematician uses that result in a new proof. We end the chapter by addressing how the
epistemic dependence relations involved in proving, checking, and using mathematical
results are related (section 5; see also figure 1). Our philosophical analyses are, although
grounded and presented from cases, principled and apply to wide ranges of contemporary
mathematical practice.

Note that, from the individual mathematician’s perspective, the mentioned modes of
unsurveyability are characterized by the circumstance that she, when wanting to prove p
(with others), or to check the proof of p (with others), or to use p in her own work, does
not have the possibility of checking the entire proof directly. Deprived of the possibility
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Figure 1: Epistemic dependence in mathematical knowledge production.

of direct calibration, of checking every step of the proof of p, she is faced with having to
depend epistemically on the testimony of others.

2 Checking proofs with others

Some of the most publicized recent breakthroughs in mathematics have come on the seams
that connect bordering sub-disciplines, and philosophers have begun to approach such
disciplinary complexity as intrinsic properties of ‘deep’ proofs (see Ernst et al., 2015).
Wiles’ proof of Fermat’s Last Theorem (1993, published 1995) and the resolution of the
Poincaré Conjecture by Perelman (2003) are both complex proofs that combine methods
developed in different branches of mathematics to bear on a celebrated mathematical
problem. In both cases, the possibility of resolving the problem through answering a
series of conjectures was well-known. Yet, the particular set of expertise combined with
the personal tenacity and audacity required made the problems seem intractable if not
impossible to the general opinion of the mathematical community.

Heralded as one of the greatest mathematical achievements of the twentieth century,
Wiles’ proof of Fermat’s Last Theorem combined different branches of number theory to
answer a conjecture developed by Goro Shimura and Yutaka Taniyama in the 1950’s and
1960’s which had been proved by Ken Ribet in 1986 to imply Fermat’s Last Theorem
(for an exposition for a general audience, see Singh, 1997). According to Wiles’ own
publication, “[t]he key development in the proof is a new and surprising link between two
strong but distinct traditions in number theory, the relationship between Galois repre-
sentations and modular forms on the one hand and the interpretation of special values
of L-functions on the other” (Wiles, 1995, p. 444). The proof, which ran to 108 pages
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was densely packed with novel ideas and specialized notation. The first announcement
by Wiles had come in 1993, but after the review process was started, a lacuna was iden-
tified by a series of questions raised by Nick Katz. With the help of his former student
Richard Taylor, Wiles was able to repair the proof in 1994 and subsumed it to a new
round of review by Gerd Faltings and others. The result was published in two conjoined
papers in the Annals of Mathematics in May 1995, two years after Wiles’ initial public
announcement (Wiles, 1995; Taylor and Wiles, 1995).

The celebrated resolution of the century-old Poincaré Conjecture by Perelman pro-
ceeded from ideas of Richard Hamilton to use so-called Ricci flows in attacking the prob-
lem (for an exposition aimed at a general audience, see e.g. O’Shea, 2007). In three papers
uploaded to the online repository arXiv in 2002–2003 (Perelman, 2002; Perelman, 2003b;
Perelman, 2003a), Perelman then developed a method of ‘surgery’ for such Ricci flows,
thereby showing how the techniques would apply to resolve the Poincaré Conjecture and
the more general Thurston Geometrization Conjecture proposed by the mathematician
William Thurston in 1982 (for an exposition that is itself part of the post-publication
checking procedure, see Kleiner and Lott, 2013). Soon after Perelman’s papers were made
available, in the spring 2003, Perelman went on a lecture tour in the US where he was
able to convince many experts that he possessed the details backing his claims for having
a proof of the conjecture (see e.g. Woit, 2004). In 2003, John Milnor who is an expert in
the field evaluated Perelman’s contributions to be both “ingenious and highly technical”,
and Milnor found that Perelman “has introduced new methods that are both powerful
and beautiful and made a substantial contribution to our understanding” (Milnor, 2003,
p. 1231). Perelman’s application of the theory of Ricci flows to topology came with great
virtuosity and a wealth of new ideas, and his announcement was initially met with great
surprise. Indeed, it took quite some effort on behalf of the mathematical community to
digest and elaborate on Perelman’s methods and proofs, and different groups pursued
the task while Perelman, himself, retracted into self-imposed isolation back in Russia.
In processing and validating Perelman’s ideas, methods, and proofs, various groups pro-
vided elaborate, book-length expositions of the proof that led to the validation of the
proof being accepted and eventually honoured with the Fields Medal (2006) and the first
of the CMI Millennium Prizes (2010). With the emergence of more accessible exposi-
tions, the theory and Perelman’s proof has also become the material for graduate courses
and theses, variations in the approaches and development of new mathematical ideas in
the mathematical community (see e.g. Tao, 2006, whose author also taught and blogged
about Perelman’s results from a variety of perspectives).

These two cases, prominent as they are, are exceptional for being the work of highly
dedicated individuals working in relative isolation which necessitated the combined and
concerted efforts of the mathematical community in checking their claims and providing
the scaffolding upon which their results could be integrated into the collection of math-
ematical results. The original papers were — for reasons of complexity — beyond the
epistemic horizon of most professional mathematicians, if not in principle then at least in
practice. By necessity of the complex task and the need for mastery of newly developed
techniques in a span of mathematical branches, the first peer assessment of such novel
claims were only possible from a small set of experts who came to have a special function
as vouchers for the results before the process could be completed (see also L. E. Ander-
sen, 2017b). In a sense, for years the mathematical community believed in Wiles’ proof
because of the popularization and the testimony of experts such as Ribet. The formal
peer review conducted by only a handful of individuals was supplemented by a series
of other means that involved more perspectives such as, for instance, the more detailed
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expositions of the theory of Terence Tao’s recasting of Perelman’s proof from a differ-
ent perspective. Thus, a process of checking was initiated which extended beyond the
ordinary peer reviews required for assessing the possibility of publication and went well
into the scrutiny of the results and methods by allocating summer schools, conferences,
exposition papers and books to disseminating and evaluating the proofs and concepts. In
the end, it is these efforts that provide the broader mathematical community the means
to accept that the two results are now proved — and this social closure is celebrated
by the community bestowing rewards and recognition upon the men behind the proofs,
whether they like it or not.

Another recently claimed mathematical result, the resolution of the so-called ABC-
conjecture by Shinichi Mochizuki in 2012 (see Hartnett, 2012/2014; Castelvecchi, 2015)
points to the necessity and challenge involved in this appropriation process. When
Mochizuki proposed his solution, it came in the form of a series of four documents to-
talling more than 500 pages filled with highly specialised, even idiosyncratic notation and
techniques. Consequently, the immediate response of many mathematicians recorded on
numerous social media was to wait and see before forming an opinion or investing in the
new proof. And the technical challenges to understand Mochizuki’s proof was supple-
mented by frustrations when Mochizuki proved to be less willing to explain himself and
his proof than was expected by many (non-Japanese) mathematicians interested in the
proof. Since these frustrations sometimes entered into public record on social media and
in the press, they can be used to point to a code of compliance on behalf of the author of
the proof to explain herself and assist in the validation and appropriation of the proof.

These discussions have served to illustrate how social factors are involved in checking
and eventually integrating new mathematical proofs, results, and techniques in the corpus
of established mathematical knowledge. Vetting published mathematical proofs in sem-
inars and summer schools is an important, yet demanding, social process in which new
proofs are scrutinized, tested, developed, and appropriated by the community. The origi-
nal author is required to take part in this process, but it involves many actors beyond the
mathematician who proposed the proof. Since this is a complicated and time-consuming
matter, the reputation of the original author, the prominence of the result, and the ini-
tial evaluation and reception by experts will matter as to how much others are willing to
invest in checking the proof.

We have now discussed how social processes are involved in validating and integrating
new mathematical results and proofs into the corpus of established knowledge. Whereas
peer-review can filter the mathematical literature, the processes discussed here are mainly
post-publication and more directed at integrating new results in the established corpus
of knowledge. In the case of Wiles’ proof of Fermat’s Last Theorem or Perelman’s proof
of the Riemann Hypothesis, the review efforts — both pre- and post-publication —
were directed not only at checking the correctness of each step in the proof but also of
explaining the proof against a background of concepts, techniques and aspirations of the
mathematical community. This required careful scrutiny of the original proposed proof
but resulted in more processes and publications that eventually integrated the proof in
a richer web of mathematical results and techniques. Thus, the review-process can be
seen as a concerted effort of a reasonably sized sub-set of the mathematical community
to make new claims accessible to the community at large.

This points to a general issue to be raised in relation to the mathematical literature,
namely that it is often the case that for a given mathematical result p, many mathemati-
cians will have to rely on relatively few mathematicians to vouch for the result. This
argument is obviously related to the epistemic division of labour in collaborations, yet it
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differs in that it points out that certain key experts — who become experts by virtue of
being epistemically and morally trustworthy and are willing to vouch for an eventually
explain important claims — serve a special role in the social fabric of mathematical
practice.

3 Doing proofs with others

Reliance on trust is a necessity in any collaboration, and mathematics is becoming in-
creasingly collaborative as modern means of communication continue to transform the
discipline. Increasingly, mathematical research results are produced in collaborations
that include mathematicians from different institutions, even different countries (Frame
and Carpenter, 1979, pp. 483–484; Luukkonen, Persson, and Sivertsen, 1992, p. 118;
Coccia and Wang, 2016). Obviously, traditional patterns of research collaborations such
as supervisor-relations are also frequent in mathematics. But being a highly theoretical
discipline not clustered around an apparatus nor heavily impeded by cultural or linguistic
barriers, mathematics lends itself as a good example of a global epistemological commu-
nity. Collaborations involving mathematicians that are not working in daily physical
proximity clearly extends the analyses of the roles of trust in research and in publication.
Collaborations between individuals who have never met in person are clearly possible,
but in practice they will typically involve assessments of the potential for success that
either depends on the track-record of the other part or on the testimony of a third part, or
on both. This is particularly important where the collaboration brings together different
sets of expertise and experience from different branches that prohibit any extensive direct
calibration. Such mathematical research relies on a division of labour that extends the
notion of the laboratory into geographically extended collaborations, and as such also
calls for a nuanced view of the role of epistemic trust in mathematics.

Whereas the sociological study of experimental sciences may focus on the laboratory
as a unit of collaboration, the similar situation in mathematics is quite different. Biblio-
metric studies have shown that it is only within the past 60 years that mathematics has
become collaborative if measured by the number of authors listed in mathematical pub-
lications (Behrens and Luksch, 2011; Grossman, 2002). It has been said of David Hilbert
(1862–1943) or Henri Poincaré (1854–1912) that they, in the early twentieth centuries,
were the last mathematicians to have a comprehensive overview of the current state of
the field. Since WWII, specialization and the sheer explosion in the number of contribut-
ing mathematicians and published mathematical papers have made it impossible for any
individual to survey the field in its entirety. Instead, individual mathematicians have
to specialize and can master only a smaller subset of the total mathematical literature,
techniques, results, and proofs.

An important form of complexity in mathematical proofs that can lead to interesting
forms of unsurveyability arises from large collaborative projects aimed at attacking a sin-
gle result by carving it up into smaller, partially independent sub-projects. A prominent
example of this kind of mathematical program can be found in the decade-long quest to
classify all finite, simple groups initiated by Daniel Gorenstein in the 1970s (for a socio-
logical analysis, see Steingart, 2012). Over the years, Gorenstein’s program was pursued
by more than 100 mathematicians, who published several hundred papers spanning in
excess of 10.000 pages before the classification was completed. In the process, numerous
local errors were detected and corrected, and Gorenstein even prematurely declared the
proof to be complete in 1983. However, Gorenstein had been misinformed about one
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particular lacking case which was only completed in a paper of more than 1200 pages
before Michael Aschbacher could declare the classification complete in 2004. By that
time, Gorenstein had been dead for a decade. A simplified proof is still in the process of
revising and publishing.

Whereas each of the contributions could, at least in principle, be checked and validated
as a standard contribution to the mathematical edifice, the classification in its entirety
was (and remains) a highly complex mathematical claim which cannot be surveyed by any
epistemically unaided mathematician within a reasonable time. Therefore, acceptance
of the classification relies on not only the usual critical stance towards published math-
ematical claims but also on the fact that the circumstance that the claim in its entirety
and in its present form is epistemically warranted only by a collaboration of individuals
spanning many years and working without the possibility of continuous calibrations of
trust (some of the key people had died by the completion of the classification).

Instead, the classification is premised on reliance on a proof sketch (the program set
out by Gorenstein in 1972) and the reliance of mathematicians on their literature. In
this light, the two types of problems alluded to above — the correction of mistakes and
the premature announcement of success — draw directly to these two observations: The
individual mathematical proofs involved in the classification are obviously susceptible to
the kinds of criticism raised against all mathematical proofs for minor imperfections or
arguments not being spelled out to the expected degree (see also L. E. Andersen, 2018).
And the premature announcement by Gorenstein, himself, was due to a miscommunica-
tion between collaborators about the completion of the last, particularly stubborn case
of the so-called quasi-thin case.

Complex collaborations such as the classification of finite, simple groups feature indi-
vidual results as stepping-stones towards a complex theorem, and the focus for epistemic
analysis here is at the warrants for the overarching claim. As illustrated in the example,
this depends on correctness and stability of the mathematical literature and as well as
the set of methods and the framework under which the study is undertaken. And as
in the first case, the validation eventually exercised to verify the claim extend beyond
peer-review (see also L. E. Andersen, 2017a) and, in the particular case of the classifi-
cation and characterization of finite simple groups, computer algebra systems have been
developed and distributed to routinely verify and use the results.

4 Doing proofs with computers

The role of computers in mathematical proofs is one of the oldest discussions about the
implications of unsurveyability for mathematical knowledge. In the wake of the proof of
the Four Color Theorem by Appel, Haken and John A. Koch in 1976, a philosophical
discussion about the implications of computer-assisted proofs erupted (for a general ex-
position, see e.g. Wilson, 2002). In a philosophically influential paper, Thomas Tymoczko
developed an analogy with a Martian mathematical oracle called Simon, whose success
in answering mathematical questions eventually led mathematicians on Earth to warrant
their knowledge claims simply by reference to “Simon says!” (Tymoczko, 1979). Thus
began a discussion about whether the computer was just another technological invention
easing the work of the mathematician and thus similar to the introduction of a pen, or
whether the computer rendered mathematical knowledge derived through its use a pos-
teriori. Central to this discussion is the circumstance that by using a computer, cases
can be verified that would exceed the combined capabilities of all living mathematicians
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through their combined lifetime. In the case of the Four Color Theorem, it was only a
matter of checking some 1470 graphs for reducibility, but it still ran to 1200 CPU-hours
on state-of-the-art computing machinery in 1975.

However, because highly disjoint proofs — such as the case-by-case verification in-
volved in the proof of the Four Color Theorem — do not provide the kinds of explanation
and insight craved by many mathematicians and are unsurveyable at the basic level to in-
dividual mathematicians, they are frequently met with reservations in the mathematical
community (Montaño, 2012). Yet, it is important to notice that the level of unsurveya-
bility is relevant to the discussion: It is, indeed, possible to give an explanation of the
proof of e.g.the Four Color Theorem such that the epistemic warrant for the proof can
be broken into the acceptance of this piece of ordinary, high-level mathematics, the ac-
ceptance of the correctness of the implementation on the computer, and the acceptance
of the successful run of the computer program. Of these three steps, the first one is an
ordinary mathematical step, and the last one is the step that spurned the debate over
the a posteriori nature of computer proofs. Yet, the middle step points to the more com-
plex epistemic dependence involved when bringing in complex programming tasks to a
mathematical question: Though intimately linked, the practitioners of mathematics and
computer programming need not overlap in expertise, and the communication of com-
puter programs and reflections about them are not part of the standard mathematical
discourse (see also Sørensen, 2016). Thus, the mathematical community as well as the
individual mathematical researcher will have to rely on trust not directly calibrated to-
wards the programmers and technicians who set up their essential computer runs. Today,
as mathematical computing enters the desktop and everyday practice of mathematicians
(see also Sørensen, 2010), some of the reservations towards this mode of epistemic labour
division may be reduced for smaller runs or for standardized software, but for more ex-
tensive runs that require dedicated and optimized programming, they are likely to remain
a source of epistemic trust for the immediate future.

Through the cases discussed in the previous section and the case of computer-assisted
proofs, we have shown that research collaborations may induce unsurveyability in the
result such that no individual mathematician will be in possession of a complete under-
standing of the entire proof. This serves to show that situations arise in mathematical
practice where no individual mathematician can be said to know the complete proof of a
theorem. Instead, trust in the form of epistemic dependence is required for collaborations
that span multiple complex expertise or uses of complex techniques or technologies to
function.

5 Conclusions

In this chapter, we have applied notions developed in the social epistemology of science to
the particular case of mathematics, where a certain belief in the purely rational individual
seemingly rules out the necessity for trust and epistemic dependence. Grounded in a
bottom-up approach and illustrated by cases from mathematical practice, our analyses
have mapped out distinct ways in which unsurveyability of mathematical proofs and
results enter into the practice of producing, checking and relying on mathematical claims.
Thus, we have systematically argued for ways in which (epistemic) trust is important in
mathematical result.

Moreover, these processes are interconnected and dynamic in the form a three-way
circular feedback loop: When the epistemic dependence pattern in the production of a
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mathematical proof is complex, the checking of the proof is often required to be more
social. For example, when a proof is made by a large collaboration, is very long and
involves different sub-disciplines, then the checking of the proof is required to be a highly
social in order to integrate sufficient expertise. Next, this further influences the reliance
on mathematical results in the sense that the more social the checking of the proof is,
the more complex is the epistemic dependence pattern that arises when one relies on the
proof. Finally, the epistemic dependence patterns involved in relying on proofs are part
of the epistemic dependence patterns involved in the production of the new proofs that
rely on them — the former patterns make the latter more complex. One could say that,
when the social aspect of one of the three ‘steps’ is increased, the social aspect of the
other two is increased as well.
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